

DIAGNOSING VULNERABILITY, EMERGENT PHENOMENA, and VOLATILITY in MANMADE NETWORKS

www.manmadenet.eu

An overview

David Arrowsmith Queen Mary, University of London

SKOPJE, 24th June 2009

MANMADE EU www.manmadenet.eu

- the project
 - networks that comprise Europe's critical infrastructure
 - primary energy supply
 - assembling data for large manmade multi-element infrastructure systems
 - apply dynamic and static mathematical methods

Collaborators and contributors

- EU Joint Research Centre, ISPRA (data production and analysis)
- Queen Mary University of London (analysis of data)
- Università Carlo Cattaneo, Castellanza (finance and economics)
- Macedonian Academy of Sciences and Arts (vulnerability)
- Collegium Budapest (wind energy and dynamics of power supply)
- Stakeholders
 - National Emergency Supply Agency, FINGRID, Finland

Networks

- Energy gas and electricity overlaid networks
- Transport city primary routes
- Social networks
 - vulnerability
 - structural (catastrophic failure of network components)
 - functional (electricity grid blackouts, supply chain dynamics)
 - interconnected data sets
 - overlaying of networks interconnected gas and electricity
 - strategy for vulnerability- green energy inputs
 - volatility and memory in markets and their dynamics
 - spot electricity pricing

Collecting information and producing datasets (JRC)

Data sets of major gas lines and exchange flows	Data sets of major gas lines between and into Western Europe <i>Platts, etc</i> .
Datasets of spot price electricity	NORDPOOL time series spot price electricity in European markets
Spatial and topological maps of the road network	Urban street networks – initially Milan, Turin and London
High voltage electricity grid	European Electricity Lines by disconnected Regions UCTE , NORDEL, UK ,National Grid
Wind energy data	ERA-40

The European Electricity Grid

Power exchange between two AC networks, that are not synchronous is by means of high voltage direct current (HVDC) lines e.g. England-France

LITHUANIA

Euro gas network (QMUL and JRC)

Transmission network (D >= 15, + interconnections) 2207 nodes, 2696 links

Complete network 24010 nodes, 25554 links

> --Gas sources --LNG terminals --Pumping stations --Gas Deposits

Gas trade movements by pipeline

Lack of good information

e.g. directings of all edges of the network – some are obvious!

www.iea.org

www.bp.com

Urban Traffic (JRC)

EU JRC Data

AADTF – annual average daily flowNetwork simplificationConnectivity analysis

Interconnected data sets

Robustness of Trans-European Gas Networks: The Hot Backbone – Carvalho(QMUL), Buzna(ETH), Bono (JRC)

Electricity network

Electricity Network

Nodes (10494) - power stations, power plants Links (15413) - power lines Node attributes - position, power plant capacity, Link attributes - voltage level, length

Gas network (primary)

Nodes (2207) - compressor stations,
LNG terminals, city gates
Links (2696) - pipelines
Node attributes - position, storage
and LNG terminal capacities,
Link attributes - length, diameter

Network analysis (JRC, MASA, QMUL)

- Different topologies were investigated
 - Random graphs (Erdos Renyi model)
 - Scale free (Barabasi Albert)
 - Manmade segments of the European power grid

- Attack strategy nodes deletion according to
 - Degree
 - Betweenness centrality
 - Modal weight
 - low correlation between the different ranking criteria
- Adaptive and non-adaptive strategy

Ranking in networks (JRC and MASA)

Decay of network - UCTE

Betweeness centrality

NRV – number of removed vertices

Comparison of simulations

Rate of decay is dependent on the selection criteria

BETWEENNESS CENTRALITY

Measuring the consequences

Complementary activity (MASA and JRC)

- Influence Model approach (MASA)
 - Method for deriving Interoperability matrices from networks' graph.
 - Quantitative rating of a node's vulnerability (importance) in interdependent infrastructures.
 - Model for analytically tracking various spreading phenomenal like failures in power grid
- Modal analysis approach (MASA with JRC)
 - Investigation on the application of Modal weight analysis in assessment of network vulnerability
- Game theory approach (MASA)
 - link vulnerability
 - identify the weakest links in complex networks

Complementary activity(LIUC and QMUL)

• Volatility and blackouts in market dynamics (LIUC)

- Time series analysis of spot price data
 - correlation analysis
 - persistency, fluctuations and
 - Hurst exponent determinism and recurrence quantification analysis
- Supply chains and production networks
 - coupled Markov chain models

NORDPOOL ELECTRICITY SPOT PRICE DATA

Supply chain models in WP5– complexity (LIUC)

Wind power (COLB)

- New energy sources and network capacity dynamics (COLB)
 - Wind data clear implications at the political level (pan European investment)
 - Useful first steps on dynamic programming for cascade breakdowns from overload

Average wind speed

Variance of wind speed

Wind field construction

and maps of potential wind energy production over Europe

Dynamic capacity model (COLB)

Vitality of networks (QMUL and JRC)

• Network quantification and vulnerability (QMUL, JRC, MASA)

- Spectral analysis, betweenness centrality, modal analysis
- Different vitality approaches -
 - maximum flow and
 - betweenness centrality for international borders

The Interconnected Network

MANMADE Observations

- Significant collection of data and synthesis
- Use of the data to obtain significance in terms of vitality and importance
- Dynamic modelling on networks– probabilistic and dynamic financial, economic and physical
- We now need to:
 - Bring more of the work together in the remaining part of the project
 - disseminate this work not only scientifically, but also in the media/social arenas
 - MANMADENET.EU Web pages have to be fully loaded

DIAGNOSING VULNERABILITY, EMERGENT PHENOMENA, and VOLATILITY in MANMADE NETWORKS